Studium, Ausbildung und Beruf

web uni-protokolle.de
 powered by
NachrichtenLexikonProtokolleBücherForenMontag, 9. Dezember 2019 

RUB-Forscher beobachten das Gehirn beim Lernen

04.10.2001 - (idw) Ruhr-Universität Bochum

Mit der Kombination aus psychophysischen Experimenten und Hirnstrommessungen am Menschen konnten RUB-Forscher erstmals eine direkte Verbindung zwischen lernbedingten Änderungen im Gehirn und dem individuellen Ausmaß des Gelernten nachweisen. Die renommierte Zeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) berichtet in ihrer Online-Ausgabe vom 2. Oktober 2001 über ihre Ergebnisse.

Bochum, 04.10.2001
Nr. 290

Learning to Feel - Fühlen lernen
RUB-Forscher beobachten das Gehirn beim Lernen
PNAS berichtet: Änderungen zeigen Ausmaß des Gelernten

Auf der Suche nach den Mechanismen und dem Ort von Lernvorgängen im Gehirn sind die beiden Bochumer Forschergruppen von PD Dr. Hubert Dinse (Institut für Neuroinformatik) und PD Dr. Martin Tegenthoff (Neurologische Universitätsklinik Bergmannsheil) einen großen Schritt weitergekommen: Mit der Kombination aus psychophysischen Experimenten und Hirnstrommessungen am Menschen konnten sie erstmals eine direkte Verbindung zwischen lernbedingten Änderungen im Gehirn und dem individuellen Ausmaß des Gelernten nachweisen. Die renommierte Zeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) berichtet in ihrer Online-Ausgabe vom 2. Oktober 2001 über ihre Ergebnisse.

Auch das erwachsene Gehirn lernt noch

Noch vor einigen Jahren hielten Wissenschaftler motorische und sensorische Funktionen im erwachsenen Gehirn für unveränderlich. Inzwischen belegen jedoch viele Untersuchungen, dass sich die Organisation und Funktion unseres Gehirns auch nach dem Ende der Entwicklungsphase an äußere oder krankheitsbedingte Veränderungen anpasst. Besonders Gebrauch, Training und Lernen verändern motorische und Wahrnehmungsfähigkeiten, die ihrerseits von Veränderungen der Hirnrinde begleitet sind. Umstritten war bisher der genaue Ort sowie die Bedeutung solcher Veränderungen.

Eine oder zwei Nadeln?

Entscheidende Erkenntnisse darüber gewannen die Bochumer Forscher in ihrer interdisziplinären Studie über "perzeptuelles Lernen": Sie maßen die so genannte Zweitpunktdiskriminationsfähigkeit von Versuchspersonen. Die Probanden berührten mit der Fingerspitze je zwei Nadeln, die in unterschiedlichen Abständen zu einander montiert waren. Bis zu einer gewissen Nähe nahmen sie die Spitzen noch als zwei getrennte wahr, standen sie jedoch sehr nahe beisammen, wurden sie als eine Nadel wahrgenommen. Gleichzeitig maßen die Forscher die Vorgänge im Gehirn über die so genannten somatosensorisch evozierten Potentiale mit 32 über der gesamten Hirnrinde angebrachten Elektroden. Mit dieser nicht-invasiven Untersuchungstechnik ("neurophysiologisches Mapping") lässt sich beim Menschen die Lage des sensiblen Repräsentationsgebietes der Fingerspitze an der Hirnoberfläche sehr genau bestimmen.

Lernen ohne Mühe

Im nächsten Schritt der Untersuchung ging es ans Lernen: Drei Stunden lang wurden im Abstand von etwa einer Sekunde kleine Reize auf die Fingerspitze der Versuchspersonen ausgeübt. Die Forscher nutzten dazu einen Walkman mit einem kleinen Lautsprecher (Durchmesser ca. ein Zentimeter), der auf der Fingerspitze lag. Seine Impulse reizten verschiedene Bereiche der Haut unter dem Lautsprecher gleichzeitig ("Koaktivierung"). Simultane Reize eignen sich besonders gut zum Lernen, das Wissenschaftler übereinstimmend auf eine Veränderung der Effizienz der Reizübertragung zwischen Hirnzellen zurückführen.

Je stärker der Lernerfolg, desto stärker die Veränderung

Beim Test nach der dreistündigen Koaktivierung hatte sich die Fähigkeit der Versuchspersonen zur Abstandsunterscheidung stark verbessert - sie erkannten bei kleineren Abständen als zuvor noch die zwei getrennten Spitzen. Parallel dazu zeigten die Hirnstrommessungen eine Verschiebung und Vergrößerung der Repräsentation des Zeigefingers auf der Hirnoberfläche. Das Ausmaß des Lernerfolgs war von Person zu Person unterschiedlich. Normalerweise nehmen Forscher derartige Schwankungen als so genanntes "Rauschen" hin - sie können z. B. auf Messfehlern beruhen. Eine Korrelationsanalyse der psychophysischen Daten mit denen der Hirnstrommessungen förderte jedoch einen einfachen, linearen Zusammenhang zwischen der individuelle Verbesserung der Versuchspersonen und der Veränderung in ihrer Hirnrinde zutage: Je stärker sich die Unterscheidungsfähigkeit verbessert hatte, desto größer war die Hirnrindenveränderung.

Unterschätzte Hirnzone

Besonders interessant ist, dass es sich bei dem Ort, für den dieser direkte Zusammenhang gezeigt werden konnte, um den so genannten primären somatosensorischen Cortex handelt - die Eingangszentrale des Gehirns, von der Wissenschaftler annehmen, dass Reize hier noch nicht bewertet oder mit Erfahrungen verbunden werden. Dieses Ergebnis stimmt mit einer Reihe neuerer Befunde überein, wonach bisher die Rolle primärer Hirnareale für "cognitive" Leistungen wahrscheinlich unterschätzt wurde. Es passt außerdem mit dem Befund zusammen, dass das Lernen auch ohne Faktoren wie Aufmerksamkeit, Belohnung oder Langzeittraining möglich ist.

Hirnverletzungen therapieren

Die experimentellen Befunde können z. B. als Basis für Untersuchungen bei Patienten mit Hirnverletzungen dienen, etwa nach Unfällen oder Schlaganfällen. Möglicherweise lassen sich in Zukunft auf dieser Grundlage auch neue Therapieansätze für Rehabilitationsmaßnahmen nach Hirnverletzungen entwickeln. Die Forscher hoffen außerdem, neue Wege für die Behandlung zentraler Schmerzphänomene, deren Ursache im Zentralnervensystem lokalisiert ist, wie z.B. von Phantomschmerzen, zu finden. Sie gehen zudem davon aus, dass solche Ansätze neue Anwendungsbereiche für die Behandlung von Lernstörungen öffnen könnten. Die Studie wurde durch die Deutsche Forschungsgemeinschaft und die Heinrich-und-Alma-Vogelsang-Stiftung unterstützt.

Titelaufnahme

Burkhard Pleger, Hubert R. Dinse, Patrick Ragert, Peter Schwenkreis, Jean-Pierre Malin und Martin Tegenthoff: Shifts in cortical representations predict human discrimination improvement. Proc. Natl. Acad. Sci. USA, 10.1073/pnas.191176298, http://www.pnas.org/cgi/content/full/191176298v1

Weitere Informationen

PD Dr. Hubert R. Dinse, Institut für Neuroinformatik der Ruhr-Universität, 44780 Bochum, Tel: 0234/32-25565, Fax: 0234/32-14209, Email: hubert.dinse@neuroinformatik.ruhr-uni-bochum.de, Internet: http://www.neuroinformatik.ruhr-uni-bochum.de/PROJECTS/ENB/enb_d.html

PD Dr. Martin Tegenthoff, Neurologische Universitätsklinik der Ruhr-Universität Bochum in den Berufsgenossenschaftlichen Kliniken Bergmannsheil, Bürkle-de-la-Champ-Platz 1, 44789 Bochum, Tel: 0234/302-6808, Fax: 0234/302-6888, Email: martin.tegenthoff@ruhr-uni-bochum.de, Internet: http://www.bergmannsheil.de/neurologie

uniprotokolle > Nachrichten > RUB-Forscher beobachten das Gehirn beim Lernen

ImpressumLesezeichen setzenSeite versendenDruckansicht

HTML-Code zum Verweis auf diese Seite:
<a href="http://www.uni-protokolle.de/nachrichten/id/77922/">RUB-Forscher beobachten das Gehirn beim Lernen </a>